Aerodynamic Stability and the Growth of Triangular Snow Crystals
نویسندگان
چکیده
We describe laboratory-grown snow crystals that exhibit a triangular, plate-like morphology, and we show that the occurrence of these crystals is much more frequent than one would expect from random growth perturbations of the more-typical hexagonal forms. We then describe an aerodynamic model that explains the formation of these crystals. A single growth perturbation on one facet of a hexagonal plate leads to air flow around the crystal that promotes the growth of alternating facets. Aerodynamic effects thus produce a weak growth instability that can cause hexagonal plates to develop into triangular plates. This mechanism solves a very old puzzle, as observers have been documenting the unexplained appearance of triangular snow crystals in nature for nearly two centuries.
منابع مشابه
Aerodynamical Effects in Snow Crystal Growth
We review several aspects of aerodynamics that affect the growth, morphology, and symmetry of snow crystals. We derive quantitative estimates for aerodynamical forces that orient falling snow crystals, estimate how air flow around snow crystals affects their growth rates (the ventilation effect), and examine how the combination of orientation and growth modification can stabilize or destabilize...
متن کاملGROWTH OF ZnS SINGLE CRYSTALS BY CVT TECHNIQUE UNDER DIFFERENT MASS TRANSPORT STABILITY CONDITIONS
Abstract: A thermodynamic model was used to find out the optimum temperature for the growth of ZnS single crystals in closed ampoules by chemical vapor transport technique. Based on this model 1002 °C was found to be optimum temperature for 2 mg/cm3 concentration of transporting agent (iodine). ZnS Crystals were grown in optimum (1002 °C) and non-optimum (902 °C and 1102 °C) temperatures. The c...
متن کاملOn the evolution of the snow surface during snowfall
[1] The deposition and attachment mechanism of settling snow crystals during snowfall dictates the very initial structure of ice within a natural snowpack. In this letter we apply ballistic deposition as a simple model to study the structural evolution of the growing surface of a snowpack during its formation. The roughness of the snow surface is predicted from the behaviour of the time depende...
متن کاملA Practical Method for Investigation of Aerodynamic and Longitudinal Static Stability of Wing-in-Ground Effect
The purpose of this paper is to present a fast, economical and practical method for mathematical modeling of aerodynamic characteristics of rectangular wing-in-ground effect (WIG). Reynolds averaged Navier-Stokes (RANS) equations were converted to Bernoulli equation by reasonable assumptions. Also Helmbold's equation was developed for calculation of the slope of wing lift coefficient in ground ...
متن کاملNumerical computations of faceted pattern formation in snow crystal growth.
Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009